Motor imagination (MI) is the mental process of only imagining an action without an actual movement. Research on MI has made significant progress in feature information detection and machine learning decoding algorithms, but there are still problems, such as a low overall recognition rate and large differences in individual execution effects, which make the development of MI run into a bottleneck. Aiming at solving this bottleneck problem, the current study optimized the quality of the MI original signal by “enhancing the difficulty of imagination tasks,” conducted the qualitative and quantitative analyses of EEG rhythm characteristics, and used quantitative indicators, such as ERD mean value and recognition rate. Research on the comparative analysis of the lower limb MI of different tasks, namely, high-frequency motor imagination (HFMI) and low-frequency motor imagination (LFMI), was conducted. +e results validate the following: the average ERD of HFMI (−1.827) is less than that of LFMI (−1.3487) in the alpha band, so did (−3.4756 < −2.2891) in the beta band. In the alpha and beta characteristic frequency bands, the average ERD of HFMI is smaller than that of LFMI, and the ERD values of the two are significantly different (p � 0.0074 < 0.01; r � 0.945).+eERD intensity STD values of HFMI are less than those of LFMI. which suggests that the ERD intensity individual difference among the subjects is smaller in the HFMI mode than in the LFMI mode. +e average recognition rate of HFMI is higher than that of LFMI (87.84% > 76.46%), and the recognition rate of the two modes is significantly different (p � 0.0034 < 0.01; r � 0.429). In summary, this research optimizes the quality of MI brain signal sources by enhancing the difficulty of imagination tasks, achieving the purpose of improving the overall recognition rate of the lower limb MI of the participants and reducing the differences of individual execution effects and signal quality among the subjects.
Loading....